Friday, May 8, 2009

m1 3rd mid online

MATHS1
Downloaded from

JNTU ONLINE EXAMINATIONS
[Mid 3 - MATHS1]
Cracked By Mr.20
1. The sequence is _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates finitely
4. oscillates infinitelly
2. The sequence is _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates finitelly
4. oscillates infinitelly
3. If sequence converges to limit L and converges to L
then converges to _
1
_ _ _ _ _ _ _ _
1. C L
2. C L
1
3. C + L
4. C + L
1
4. If sequence converges to limit L and converges to L
then converges to
1
_ _ _ _ _ _ _ _ _
1. L + L
1
2. L - L
1
3. L . L
1
4.
5. Every convergent sequence is _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. bounded
4. unbounded
6. The sequence is _ _ _ _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates finitely
4. oscillapes infinitely
7. The sequence is _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates finitely
4. oscillate infinitely
file:///F|/m1/m1/MATHS1.html (1 of 26)5/8/2008 2:53:32 PM

Visit “gistsamya.blogspot.com” for more bits
for more bits






















MATHS1
8. The sequence is _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates finitely
4. oscillate infinitely
9. The sequence is _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates finitely
4. oscillate infinitely
10. If sequence converges to limit L and converges to L
then converges
1
to _ _ _ _ _ _ _ _ _
1. L - L
1
2. L.L
1
3. L + L
1
4.
11. If then is _ _ _ _ _ _ _ _ _
1. converges
2. divergent
3. oscillates finitelly
4. oscillates infinitelly
12. The series 1
+ 2
+ 3
+ 4
+ ---------------- + n
+ --------------- is -----------------
2
2
2
2
2
1. converges
2. divergent
3. oscillates finitelly
4. oscillates infinitelly
13. If sum {u} converges to A and sum {v} converges to B, then converges to _
_ _ _ _ _ _ _ _
1. A+B
2. A-B
3. AB
4.
14. If converges to A and C
e
R then converges to _ _ _ _ _ _ _ _ _
1. C + A
2. C - A
3. CA
4.
15. If converges to A and converges to B and P, q
e
R then
converges to _ _ _ _ _ _ _ _ _
1. A + B
2. PA + qB
3. PA - qB
4.
16. The series is _ _ _ _ _ _ _ _ _
1. convergens
file:///F|/m1/m1/MATHS1.html (2 of 26)5/8/2008 2:53:32 PM






















MATHS1
2. diverges
3. oscillates finitelly
4. oscillates infinitelly
17. The series is _ _ _ _ _ _ _ _ _
1. convergens
2. diverges
3. oscillates finitelly
4. oscillates infinitelly
18. The series 1+2+3+4+ + n + is _ _ _ _ _
_ _ _ _
1. convergens
2. diverges
3. oscillates finitelly
4. oscillates infinitelly
19. The series is _ _ _ _ _ _ _ _ _
1. convergens
2. diverges
3. oscillates finitelly
4. oscillates infinitelly
20. If is converges then is _ _ _ _ _ _ _ _ _
1. = 0
2.
3. 1
4. 1
21. The geometric series a + ar + ar
+ (a 0) is converges to the sum _ _
2
_ _ _ _ _ when
1.
2.
3.
4. a r
22. The series
is _ _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillate finitety
4. oscillates infinitaley
23. The series
diverges if _ _ _ _ _ _ _ _ _ _
1. P 1
2. P
3. P 0
4. P = -1
24. The series is _ _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillate finitety
file:///F|/m1/m1/MATHS1.html (3 of 26)5/8/2008 2:53:32 PM





































MATHS1
4. oscillates infinitaley
25. The series is _ _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillate finitety
4. oscillates infinitaley
26. The geometric series a + ar + ar
+ (a 0) is convergent is _ _ _ _ _ _
2
_
1. -1 r 1
2.
3. r = -1
4. r -1
27. The geometric series a + ar + ar
+ (a 0) is diverges to
8
if _ _ _ _ _ _
2
_
1. -1 r 1
2.
3. r = -1
4. r -1
28. The geometric series a + ar + ar
+ (a 0) is oscillates finitely if _ _ _ _
2
_ _ _
1. -1 r 1
2.
3. r = -1
4. r -1
29. The geometric series a + ar + ar
+ (a 0) is oscillates infinitely if _ _ _
2
_ _ _ _
1. -1 r 1
2.
3. r = -1
4. r -1
30. The series
converges if _ _ _ _ _ _ _ _ _ _
1. P 1
2. P 1
3. P = 1
4. P
1
31. If is a series of positive terms and then the series is
convergent if _ _ _ _ _ _ _ _ _ _ _ _
1. K 1
2. K 1
3. K = 1
4. K
1
32. If is a series of positive terms and then the series is
divergent if _ _ _ _ _ _ _ _ _ _ _ _
1. K 1
2. K 1
file:///F|/m1/m1/MATHS1.html (4 of 26)5/8/2008 2:53:32 PM

































MATHS1
3. K = 1
4. K
1
33. If is a series of positive terms and then is _ _ _ _ _ _ _
_ _ _ _ _
1. K 1
2. K 1
3. K = 1
4. K
1
34. If is a positive term series, and , (one) then _ _ _ _ _ _ _ _ _ _ _
1. is convergent
2. is divergent
3. is
4. the series may converge, if may diverge
35. The series is _ _ _ _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates
4. the series may converge, if may divergent
36. Let and be two positive term series. If (finite and non-zero),
then _ _ _ _ _ _ _ _ _
1. is converges
2.
3. is diverges
4. and both converge or diverge
37. The series is _ _ _ _ _ _ _ _
1. converges
2. diverges
3. oscillates
4. the series may converge, it may diverge
38. The series is _ _ _ _ _ _ _ _
1. converges
2. diverges
3. oscillates
4. the series may converge, it may diverge
39. If is a positive term series, and , then is convergent is _ _ _ _
_ _ _ _ _ _ _
1. L 1
2. L 1
3.
4. L = 1
40. If is a positive term series, and , then is divergent if _ _ _ _ _
_ _ _ _ _ _
1. L 1
2. L 1
file:///F|/m1/m1/MATHS1.html (5 of 26)5/8/2008 2:53:32 PM














MATHS1
3.
4. L = 1
41. The series converges is _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
42.
is
1. oscillatory
2. convergent
3. conditionally convergent
4. divergent
43. The series is _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates
4. neither converges nor diverges
44. The sum of the alternating harmonic series
1. zero
2. infinite
3. log 2
4. not defined as the series is not convergent
45. Every absolutely convergent series is _ _ _ _ _ _ _ _ _ _ _
1. oscillatory
2. convergent
3. divergent
4. conditionally convergent
46. If is _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates
4. neither converges nor diverges
47. The series is _ _ _ _ _ _ _ _ _
1. convergent
2. divergent
3. oscillates
4. neither converges nor diverges
48. is
1. conditionally convergent
2. absolutely convergent
3. divergent
4. oscillatory
49. The series
file:///F|/m1/m1/MATHS1.html (6 of 26)5/8/2008 2:53:32 PM









MATHS1
1. divergent
2. conditionally convergent
3. absolutely convergent
4. convergent
50. The series is
1. convergent
2. divergent
3. oscillatory
4. cannot say
51. The series is
1. convergent
2. divergent
3. oscillatory
4. cannot say
52. is
1. oscillatory
2. absolutely convergent
3. conditionally convergent
4. divergent
53. The series is
1. convergent
2. divergent
3. oscillatory
4. not convergent
54. is
1. convergent
2. divergent
3. oscillatory
4. not convergent
55. is
1. convergent
2. divergent
3. oscillatory
4. not convergent
56. is
1. convergent
2. divergent
3. oscillatory
4. not convergent
57. is
1. oscillatory
2. absolutely convergent
3. conditionally convergent
file:///F|/m1/m1/MATHS1.html (7 of 26)5/8/2008 2:53:32 PM


























MATHS1
4. divergent
58. If Ø = x
+yz then grad Ø = _ _ _ _ _ _ _ _ _ _
2
1. 2i+zj+yk
2. xi+yj+zk
3. 2xi+yj+zk
4. 2xi+zj+yk
59. The directional derivatives of the function f(x,y,z) = 2xy+z
at the point (1,-1,3) in the
2
direction of the vector i+2j+2k is _ _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
60. If = xi+yj+zk and = a
i + a
j +a
k is a constant verctor, then grad = _ _ _ _ _ _
1
2
3
_ _
1. 2
2. 2
3.
4.
61. = _ _ _ _ _ _
1. 0
2. 1
3. 2
4. 3
62. If Ø is a constant scales point function, then = _ _ _ _ _ _ _ _ _ _
1. a constant
2. 0
3.
4. 1
63. = _ _ _ _ _ _ _ _ _ _
1. yzi + zxj + xzk
2. yzi + zxj + yzk
3. yzi + zxj + xyk
4. xzi + yxj + zxk
64. If then = _ _ _ _ _ _ _ _ _ _
1.
2.
3. r
4. 2 r
65. (log r) = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
file:///F|/m1/m1/MATHS1.html (8 of 26)5/8/2008 2:53:32 PM

























MATHS1
66. (x+y+z) = _ _ _ _ _ _ _ _ _ _
1. i+j+k
2. 2(i+j+k)
3. xi+yj+zK
4.
67. (r
) = _ _ _ _ _ _ _ _ _ _
n
1.
2.
3.
4.
68. Calculate .(3x
i + 5xy
j + xyz
K) at the point (1,2,3)
2
2
3
1. 60
2. 70
3. 80
4. 90
69. If = xyzi + 3x
yj + (xz
- y
z)K then div = _ _ _ _ _ _ _ at the point (2,-1,1)
2
2
2
1. 12
2. 14
3. 16
4. 18
70. If = (a x + 4y
z)i + (x
sin z - 3y)j - (e
+ 4cos x
y)K is solenoidal then a = _ _ _ _ _
2
3
x
2
_ _ _ _
1. 1
2. 2
3. 3
4. 4
71. If = (b x
y + yz)i + (xy
- xz
)j + (2xyz - 2x )K is solenoidal then b = _ _ _ _ _ _ _
2
2
2
_ _
1. 1
2. -1
3. 2
4. -2
72. If = xi+yj+zk, then div = _ _ _ _ _ _ _ _ _ _
1. 0
2.
3. 2
4. 3
73. For a constant vecor div = _ _ _ _ _ _ _ _ _ _
1. 0
2.
3. 2
4. 3
74. A Vector point function is said to be solenoidal if _ _ _ _ _ _ _ _ _ _ _ _
1. curl =
2. div = 0
3.
file:///F|/m1/m1/MATHS1.html (9 of 26)5/8/2008 2:53:32 PM
































MATHS1
4. curl
75. If = grad (x
+ y
+ z
- 3xyz) then div = _ _ _ _ _ _ _
3
3
3
1. 0
2. 3(x+y+z)
3. 6(x+Y+z)
4. 9(x+Y+z)
76. The vector = (x+3y)i+(y+2z)j+(x-2z)K is _ _ _ _ _ _ _
1. solenoidal
2. irrotational
3. = 4
4. =
77. If is a conservative force field then curl is _ _ _ _ _ _ _ _
1.
2. =
3. =
4. a constant vector
78. If = grad (x
+ y
+ z
- 3xyz) then curl = _ _ _ _ _ _ _ _ _ _
3
3
3
1.
2. (3x
- 3yz)i + (3y
- 3xz)j + (3z
- 3xy)K
2
2
2
3. 6(x+y+z)i
4. (x
+ y
+ z
)i
3
3
3
79. If r = 6 then n = _ _ _ _ _ _ _ _ _ _
1. 0
2. 1
3. 2
4. 3
80. (log r) = _ _ _ _ _ _ _ _ _ _
1. -
2.
3.
4.
81. If is a constant vector then ) = _ _ _ _ _ _ _ _ _ _
1.
2. 2
3. 3
4.
82. If = xy
i + 2x
yj - 3ayzk at (1,1,1) is solenoidal then a = _ _ _ _ _ _ _ _ _ _
2
2
1. 0
2. 2
3. 1
4. -1
83. Curl of x
i + y
j + z
k is
2
2
2
1.
2. xi+zk
file:///F|/m1/m1/MATHS1.html (10 of 26)5/8/2008 2:53:32 PM














































MATHS1
3.
4. xi - yj
84. If = F
(y,z)i + F
(z,x)j + F
(x,y)k then is
1
2
3
1. irrotational
2. solenoidal only
3. both irrotational and solenoidal
4. neither irrotational nor solenoidal
85. The vector f(r) is
1. irrotational
2. solenoidal only
3. both irrotational and solenoidal
4. neither irrotational nor solenoidal
86. If = xi + yj + zk the = _ _ _ _ _ _ _ _ _ _
1. 0
2.
3. 2
4.
87. If = (2+y)i + axj + 2zk is irrotational then a = _ _ _ _ _ _ _ _ _ _
1. 1
2. 2
3. 3
4. 4
88. ( + ) = _ _ _ _ _ _ _ _
1. +
2.
3. +
4.
89. If is solenoidal vector, then curl = _ _ _ _ _ _ _ _ _ _
1.
2.
3. -
4.
90. If is a vector function and Ø is a scalar function, then div ( ) = _ _ _ _ _ _ _ _ _ _
1. grad - Ø div
2. grad + Ø div
3. grad - Ø curl
4. grad + Ø curl
91. If is a vector function and Ø is a scalar function, then curl ( ) = _ _ _ _ _ _ _ _ _ _
1. grad - Ø div
2. grad + Ø div
3. grad - Ø div
4. grad + Ø curl
92. Div (grad Ø) _ _ _ _ _ _ _ _ _ _
1. 0
file:///F|/m1/m1/MATHS1.html (11 of 26)5/8/2008 2:53:32 PM










































MATHS1
2.
3. grad Ø
4.
93. Curl (grad Ø) _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4. 2
94. Div (curl ) _ _ _ _ _ _ _ _ _ _
1.
2. 0
3.
4.
95. curl curl = _ _ _ _ _ _ _ _ _ _
1. grad div +
2. grad div
3.
4. -
96. div ( ) = _ _ _ _ _ _ _ _ _ _
1. . curl + . curl
2. . curl + . curl
3. . curl . curl
4. . curl
97. grad (fg) = _ _ _ _ _ _ _ _ _ _
1. f(grad g) - g(grad f)
2. f(grad g) + g(grad f)
3. f g
4. g f
98. By Green's theorem, = _ _ _ _ _ _ _ _ _ _ _ _ where C is
the circle x
+y
= a
2
2
2
1.
2.
3.
4.
99. By Green's theorem, = _ _ _ _ _ _ _ _ _, where C: rectangle
with verfices of (0,0),(
p
,0),(
p
,
p
/2),(0,
p
/2)
1.
2.
3.
file:///F|/m1/m1/MATHS1.html (12 of 26)5/8/2008 2:53:32 PM

































MATHS1
4.
100. By Green's theorem, = _ _ _ _ _ _ _ _ _ where C is
bounded of y
= 8x & x=2
2
1.
2.
3.
4.
101. If is a conservative field then = Ø where Ø is scalar potential. In this case the
work done by a force in moving a particle along a curve C from point P
to point P
=
1
2
_ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
102. Area A of a plane region bounded by a simple closed curve C can be calculated using
green's theorem as A = _ _ _ _ _ _ _ _ _ _ in polar coordinats.
1.
2.
3.
4.
103. If = xyi - y
j evaluate int {} .d , where c is the curve in the xy-plane y = 2x
. from
2
2
(0,0) to (1,2)
1.
2. -
3.
4. -
104. The area enclosed by a plane curve is _ _ _ _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
105. By green's theorem, = _ _ _ _ _ _ _ _ _ _ _ _
1.
2.
file:///F|/m1/m1/MATHS1.html (13 of 26)5/8/2008 2:53:32 PM



















MATHS1
3.
4.
106. By green's theorem, = _ _ _ _ _ _ _ _ _ _ _ where c is bounded
by y=x & y= x
2
1.
2.
3.
4.
107. If then by green's theorem = _ _ _ _ _ _ _ _ _
1. 0
2. 2
3. 4
4. 6
108. If = 2x
i-3yzj+xz
k, then = _ _ _ _ _ _ _ _ _ _ _ _ _
2
2
1. 2x-3z+2xz
2. 4x-3z+2xz
3. 4x-3z
4. 4xyz
109. A unit normal to x
+y
+x
= 5 at (0,1,2) is _ _ _ _ _ _ _ _ _ _ _ _
2
2
2
1. (i+2k)
2. (j+2k)
3. (i+2j)
4. (i+j)
110. If S is a closed surface enclosing a volume V and if = xi+yj+zk, then ds = _ _
_ _ _ _ _ _ _ _
1. V
2. 2V
3. 3V
4. 6V
111. Curl (xyi+yzj +zxk)= _ _ _ _ _ _ _ _ _ _ _
1. yi+zj+xk
2. -(yi+zj+xk)
3. xi+yj+zk
4. -(xi+yi+zk)
112. Curl (yzi+zxj+xyk) = _ _ _ _ _ _ _ _ _ _ _
1. yi+zj+xk
2. -(yi+zj+xk)
3. xi+yj+zk
4.
file:///F|/m1/m1/MATHS1.html (14 of 26)5/8/2008 2:53:32 PM



























MATHS1
113. By divergence theorem, = _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
114. By stoke's theorem,
1.
2.
3.
4.
115. If S be any closed surface, then = _ _ _ _ _ _ _ _ _ _
1. 2
2. -2
3. 0
4. 1
116. If = 3 then ds = _ _ _ _ _ _ _ _ _ _, where S is the surface of a unit sphere.
1. 2
p
2. 3
p
3. 4
p
4. 6
p
117. If = f
i+f
j+f
k, then = _ _ _ _ _ _ _ _ _ _ _ _
1
2
3
1.
2.
3.
4.
118. L {coshat } = _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
119. L { } = _ _ _ _ _ _ _ _ _ _ _
1.
2.
file:///F|/m1/m1/MATHS1.html (15 of 26)5/8/2008 2:53:32 PM



































MATHS1
3.
4.
120. L {2
} = _ _ _ _ _ _ _ _ _ _
t
1.
2.
3.
4.
121. L {cosat } = _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
122. L {sinhat } = _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
123. L = _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
124. L = _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
125. L { } = _ _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
126. L { } = _ _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
127. L {sinat } = _ _ _ _ _ _ _ _ _ _ _ _
file:///F|/m1/m1/MATHS1.html (16 of 26)5/8/2008 2:53:32 PM
































MATHS1
1.
2.
3.
4.
128. If L {f(t) }=F(s), then L { f( ) } = _ _ _ _ _ _ _ _ _ _ _ _
1. aF(as)
2.
3. F
4. F(as)
129. L {e sint } = _ _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
130. If L {fct }=F(s), then L { sinhat . f(t) }= _ _ _ _ _ _ _ _ _ _ _ _ _
1. F(s-a)+F(s+a)
2. [F(s-a)+F(s+a)]
3. F(s-a)-F(s+a)
4. [F(s-a)-F(s+a)]
131. If L {f(t) }=F(s), then L {f(at) }= _ _ _ _ _ _ _ _ _ _ _ _ _
1. F
2. F
3. F
4. aF
132. n
e
N, L {t
} = _ _ _ _ _ _ _ _ _ _ _
n
1.
2.
3.
4.
133. If L {f(t) } = F(s), then L {e f(t) } = _ _ _ _ _ _ _ _ _ _
1. F(s-a)
2. F(s+a)
3. F(as)
4.
134. If L {f(t) } = F(s), then L {e f(t) } = _ _ _ _ _ _ _ _ _ _
1. F(s-a)
2. F(s+a)
3. F(as)
4.
135. L {e cosbt } = _ _ _ _ _ _ _ _ _ _
1.
file:///F|/m1/m1/MATHS1.html (17 of 26)5/8/2008 2:53:32 PM





























MATHS1
2.
3.
4.
136. L {te } = _ _ _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
137. If L {fct }=F(s), then L { cosh at . f(t) }= _ _ _ _ _ _ _ _ _ _ _ _ _
1. F(s-a)+F(s+a)
2. [F(s-a)+F(s+a)]
3. F(s-a)-F(s+a)
4. [F(s-a)+F(s)]
138. = _ _ _ _ _ _ _
1. (t-3) H (t-3)
2. (t-3)
H (t-3)
2
3.
4.
139. = _ _ _ _ _ _ _ _ _ _
1. sin K t
2. cos K t
3. H (t-a) sin K t
4. H(t-a) sin K (t-a)
140. If , then
1. F(3s)
2.
3.
4.
141. = _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
142. L { H(t-a) } = _ _ _ _ _ _ _ _ _ _ _ _
1. e
2.
3. se
4.
143. If L {f(t) } = F(s), then L {f(t-a).H(t-a) }= _ _ _ _ _ _ _ _ _ _
file:///F|/m1/m1/MATHS1.html (18 of 26)5/8/2008 2:53:32 PM




























MATHS1
1. F(s-a)
2. F(s+a)
3. e F(s)
4. e F(s)
144. L {e sinbt } = _ _ _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
145. L {e
cos2t } = _ _ _ _ _ _ _ _ _ _ _ _
t
1.
2.
3.
4.
146. L {(t-2)
H(t-2) } = _ _ _ _ _ _ _ _ _ _ _ _ _
3
1.
2.
3.
4.
147. L {1 } = _ _ _ _ _ _ _ _ _ _ _ _
1. 0
2. 1
3.
4.
148. = _ _ _ _ _ _ _ _ _ _
1. sinh 5t
2. sin 5t
3. sin 5t
4. sinh 5t
149. = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
150. = _ _ _ _ _ _ _ _ _
1. e
-1
t
file:///F|/m1/m1/MATHS1.html (19 of 26)5/8/2008 2:53:32 PM




























MATHS1
2. e
+1
t
3. e -1
4. -e
+1
t
151. = _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
152. = _ _ _ _ _ _ _ _ _ _
1. cos 16t
2. cosh 16t
3. cos 4t
4. cosh 4t
153. = _ _ _ _ _ _ _ _ _
1. e
2. e
3. cos 5t
4. sin 5t
154. = _ _ _ _ _ _ _ _ _
1. 1
2. e
t
3. t
4. e
155. = _ _ _ _ _ _ _ _ _
1. e
2. e
3. e
t
4. e
156. If = F(s), then = _ _ _ _ _ _ _ _ _ _
1.
2.
3. 10 f (10s)
4.
157. If = F(s), then = _ _ _ _ _ _ _ _ _ _
1. 5 F(s)
2. 5 F(5s)
3. F(5s)
4. S F(5s)
158. If , then = _ _ _ _ _ _ _ _ _ _
file:///F|/m1/m1/MATHS1.html (20 of 26)5/8/2008 2:53:32 PM












































MATHS1
1. e
2. e
3. -e
4. -e
159. If , then = _ _ _ _ _ _ _ _ _ _
1. e
2. e
3. -e
4. -e
160. = _ _ _ _ _ _ _
1.
2.
3.
4.
161. = _ _ _ _ _ _ _ _ _ _
1. e sin bt
2. e sin bt
3. e cos bt
4. e cos bt
162. = _ _ _ _ _ _ _ _ _ _
1. e cos bt
2. e sin bt
3. e cosh bt
4. e cos bt
163. If = F(s), then = _ _ _ _ _ _ _
1. (s)
2. - (s)
3. (s)
4. - (s)
164. If = F(s), then = _ _ _ _ _ _ _
1. (s)
2. - (s)
3. (s)
4. - (s)
165. = _ _ _ _ _ _ _
1.
2.
3.
file:///F|/m1/m1/MATHS1.html (21 of 26)5/8/2008 2:53:32 PM

































MATHS1
4.
166. = _ _ _ _ _ _ _
1. e
2. e
3.
4.
167. = _ _ _ _ _ _ _
1. coshat
2. sinat
3. sinhat
4. cosat
168. = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
169. = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
170. = _ _ _ _ _ _ _ _ _ _
1.
2. e
3.
4.
171. If = F(s), then = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
file:///F|/m1/m1/MATHS1.html (22 of 26)5/8/2008 2:53:32 PM



































MATHS1
172. = _ _ _ _ _ _ _ _ _ _
1. e
2. t e
3. t e
4. e
173. If = F(s) then = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
174. = _ _ _ _ _ _ _ _ _ _
1. -cot (s)
2. -Tan (s)
3. cot (s)
4. Tan (s)
175. = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
176. = _ _ _ _ _ _ _ _ _ _
1. e sinbt
2. e sinh bt
3. e sinbt
4. e sinh bt
177. = _ _ _ _ _ _ _ _ _ _
1. e
2. e
3. -2e
4. e
178. = _ _ _ _ _ _ _ _ _ _
1. cos 2t
2. sin 2t
3. sin 2t
file:///F|/m1/m1/MATHS1.html (23 of 26)5/8/2008 2:53:32 PM





























MATHS1
4. 2 cos 2t
179. = _ _ _ _ _ _ _ _ _ _
1. e
2. t e
3. t
4. t e
t
180. = _ _ _ _ _ _ _ _ _ _
1.
2. 4
3. 4
4.
181. = _ _ _ _ _ _ _ _ _ _
1. cos at
2. sin at
3. cos hat
4. sin hat
182. = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
183. If f(t) is a periodic function with period T, then = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
184. = _ _ _ _ _ _ _ _ _ _
1. e sin bt
2. e cos bt
3. e sin bt
4. e cos bt
185. = _ _ _ _ _ _ _ _ _ _ , where is convolution
1.
file:///F|/m1/m1/MATHS1.html (24 of 26)5/8/2008 2:53:32 PM



























MATHS1
2. F(s) + G(s)
3. F(s) - G(s)
4. F(s) . G(s)
186. = _ _ _ _ _ _ _ _ _ _ , where F(s) =
1. f(t) g(t)
2. f(t) g(t)
3.
4. f(t) - g(t)
187. = _ _ _ _ _ _ _ _ _ _
1.
2.
3. .
4.
188. , then = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
189. , then = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
190. = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
file:///F|/m1/m1/MATHS1.html (25 of 26)5/8/2008 2:53:32 PM





































MATHS1
191. = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4.
192. If then = _ _ _ _ _ _ _ _ _ _ _
1. tf(t)
2.
3.
4. t f(t)
193. = _ _ _ _ _ _ _ _ _ _
1. S F(s) - f(0)
2. S
F(s) - f(0)
2
3. S F(s) - f (0)
4. S F(s) - f (0)
194. = _ _ _ _ _ _ _ _ _ _
1. S
F(s) - f (0)
2
2. S
F(s) - s f(0) - f (0)
2
3. S
F(s) - sf (0)
2
4. S
F(s) - s f (0) - f (0)
2
195. = _ _ _ _ _ _ _ _ _ _
1. S
F(s) - s f(0) - f (0)
2
2. S
F(s) - s
f(0) - sf (0)
3
2
3. S
F(s) - s
f(0) - sf (0) - f (0)
3
2
4. S
F(s) - s
f (0) - sf (0) - f(0)
3
2
196. If then = _ _ _ _ _ _ _ _ _ _
1.
2.
3.
4. S F (s)
197. If then = _ _ _ _ _ _ _ _ _ _
1. F(s)
2. F(s)
3. S F (s)
4. S F (s)
file:///F|/m1/m1/MATHS1.html (26 of 26)5/8/2008 2:53:32 PM

No comments: